Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.831
Filtrar
1.
Clin Cancer Res ; 30(8): 1478-1487, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593249

RESUMO

PURPOSE: RUNX3 is a tumor suppressor gene, which is inactivated in approximately 70% of lung adenocarcinomas. Nicotinamide, a sirtuin inhibitor, has demonstrated potential in re-activating epigenetically silenced RUNX3 in cancer cells. This study assessed the therapeutic benefits of combining nicotinamide with first-generation EGFR-tyrosine kinase inhibitors (TKI) for patients with stage IV lung cancer carrying EGFR mutations. PATIENTS AND METHODS: We assessed the impact of nicotinamide on carcinogen-induced lung adenocarcinomas in mice and observed that nicotinamide increased RUNX3 levels and inhibited lung cancer growth. Subsequently, 110 consecutive patients with stage IV lung cancer who had EGFR mutations were recruited: 70 females (63.6%) and 84 never-smokers (76.4%). The patients were randomly assigned to receive either nicotinamide (1 g/day, n = 55) or placebo (n = 55). The primary and secondary endpoints were progression-free survival (PFS) and overall survival (OS), respectively. RESULTS: After a median follow-up of 54.3 months, the nicotinamide group exhibited a median PFS of 12.7 months [95% confidence interval (CI), 10.4-18.3], while the placebo group had a PFS of 10.9 months (9.0-13.2; P = 0.2). The median OS was similar in the two groups (31.0 months with nicotinamide vs. 29.4 months with placebo; P = 0.2). Notably, subgroup analyses revealed a significant reduction in mortality risk for females (P = 0.01) and never-smokers (P = 0.03) treated with nicotinamide. CONCLUSIONS: The addition of nicotinamide with EGFR-TKIs demonstrated potential improvements in PFS and OS, with notable survival benefits for female patients and those who had never smoked (ClinicalTrials.gov Identifier: NCT02416739).


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Feminino , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Niacinamida/uso terapêutico , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Receptores ErbB/genética
2.
Cancer Res ; 84(8): 1188-1190, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616658

RESUMO

Residual cancer cells persist even after targeted therapies, serving as a reservoir for the subsequent acquisition of genetic alterations that lead to acquired drug resistance and tumor relapse. These initial drug-tolerant persisters (DTP) are phenotypically heterogenous with transient phenotypes attributed to epigenetic, metabolic, and cell-cycle changes. DTPs are responsible for the inevitable relapse seen in EGFR-mutant non-small cell lung cancer (NSCLC) despite high initial response to tyrosine kinase inhibitor (TKI) treatment. While past in vitro studies identified diverse drivers of drug-tolerant persistence to EGFR TKIs in NSCLC, the resultant phenotypic plasticity is not well understood and in vivo models of persistence are lacking. In this issue of Cancer Research, Hu and colleagues used patient-derived xenograft models of EGFR-mutant lung cancer treated with the third-generation TKI osimertinib to investigate mechanisms of persistence at the time of maximal response. Using bulk and single-cell RNA sequencing, the authors identified a DTP transcriptional cluster mediated by the key neuroendocrine lineage transcription factor ASCL1, which triggers an epithelial-to-mesenchymal transition transcriptional program. ASCL1 overexpression increased osimertinib tolerance in vitro as well, apparently independent of its role in neuroendocrine differentiation. Interestingly, the ability of ASCL1 to induce persistence was context dependent as this occurred only in epigenetically permissive cells. Overall, these findings contribute to our understanding of DTP heterogeneity seen after osimertinib treatment and provide insights into potential therapeutic targets. See related article by Hu et al., p. 1303.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Recidiva Local de Neoplasia , Recidiva , Receptores ErbB/genética
3.
Drug Des Devel Ther ; 18: 1115-1131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618280

RESUMO

Background: The ChaiShao Shugan Formula (CSSGF) is a traditional Chinese medicine formula with recently identified therapeutic value in triple-negative breast cancer (TNBC). This study aimed to elucidate the underlying mechanism of CSSGF in TNBC treatment. Methods: TNBC targets were analyzed using R and data were from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The major ingredients and related protein targets of CSSGF were explored via the Traditional Chinese Medicine Systems Pharmacology database, and an ingredient-target network was constructed via Cytoscape to identify hub genes. The STRING database was used to construct the PPI network. GO and KEGG enrichment analyses were performed via R to obtain the main targets. The online tool Kaplan‒Meier plotter was used to identify the prognostic genes. Molecular docking was applied to the core target genes and active ingredients. MDA-MB-231 and MCF-7 cell lines were used to verify the efficacy of the various drugs. Results: A total of 4562 genes were screened as TNBC target genes. The PPI network consisted of 89 nodes and 845 edges. Our study indicated that quercetin, beta-sitosterol, luteolin and catechin might be the core ingredients of CSSGF, and EGFR and c-Myc might be the latent therapeutic targets of CSSGF in the treatment of TNBC. GO and KEGG analyses indicated that the anticancer effect of CSSGF on TNBC was mainly associated with DNA binding, transcription factor binding, and other biological processes. The related signaling pathways mainly involved the TNF-a, IL-17, and apoptosis pathways. The molecular docking data indicated that quercetin, beta-sitosterol, luteolin, and catechin had high affinity for EGFR, JUN, Caspase-3 and ESR1, respectively. In vitro, we found that CSSGF could suppress the expression of c-Myc or promote the expression of EGFR. In addition, we found that quercetin downregulates c-Myc expression in two BC cell lines. Conclusion: This study revealed the effective ingredients and latent molecular mechanism of action of CSSGF against TNBC and confirmed that quercetin could target c-Myc to induce anti-BC effects.


Assuntos
Catequina , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Luteolina , Simulação de Acoplamento Molecular , Quercetina , Células MCF-7 , Receptores ErbB/genética
4.
Sci Signal ; 17(832): eadf4299, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626007

RESUMO

Cell-to-cell communication through secreted Wnt ligands that bind to members of the Frizzled (Fzd) family of transmembrane receptors is critical for development and homeostasis. Wnt9a signals through Fzd9b, the co-receptor LRP5 or LRP6 (LRP5/6), and the epidermal growth factor receptor (EGFR) to promote early proliferation of zebrafish and human hematopoietic stem cells during development. Here, we developed fluorescently labeled, biologically active Wnt9a and Fzd9b fusion proteins to demonstrate that EGFR-dependent endocytosis of the ligand-receptor complex was required for signaling. In human cells, the Wnt9a-Fzd9b complex was rapidly endocytosed and trafficked through early and late endosomes, lysosomes, and the endoplasmic reticulum. Using small-molecule inhibitors and genetic and knockdown approaches, we found that Wnt9a-Fzd9b endocytosis required EGFR-mediated phosphorylation of the Fzd9b tail, caveolin, and the scaffolding protein EGFR protein substrate 15 (EPS15). LRP5/6 and the downstream signaling component AXIN were required for Wnt9a-Fzd9b signaling but not for endocytosis. Knockdown or loss of EPS15 impaired hematopoietic stem cell development in zebrafish. Other Wnt ligands do not require endocytosis for signaling activity, implying that specific modes of endocytosis and trafficking may represent a method by which Wnt-Fzd specificity is established.


Assuntos
Peixe-Zebra , beta Catenina , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , beta Catenina/metabolismo , Receptores ErbB/genética , Endocitose , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
5.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612674

RESUMO

We investigated mRNA-lncRNA co-expression patterns in a cellular model system of non-small cell lung cancer (NSCLC) sensitive and resistant to the epithelial growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) erlotinib/gefitinib. The aim of this study was to unveil insights into the complex mechanisms of NSCLC targeted therapy resistance and epithelial-to-mesenchymal transition (EMT). Genome-wide RNA expression was quantified for weighted gene co-expression network analysis (WGCNA) to correlate the expression levels of mRNAs and lncRNAs. Functional enrichment analysis and identification of lncRNAs were conducted on modules associated with the EGFR-TKI response and/or intermediate EMT phenotypes. We constructed lncRNA-mRNA co-expression networks and identified key modules and their enriched biological functions. Processes enriched in the selected modules included RHO (A, B, C) GTPase and regulatory signaling pathways, apoptosis, inflammatory and interleukin signaling pathways, cell adhesion, cell migration, cell and extracellular matrix organization, metabolism, and lipid metabolism. Interestingly, several lncRNAs, already shown to be dysregulated in cancer, are connected to a small number of mRNAs, and several lncRNAs are interlinked with each other in the co-expression network.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , RNA Longo não Codificante/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/genética
6.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612799

RESUMO

EGFR exon 20 (EGFR Ex20) insertion mutations in non-small cell lung cancer (NSCLC) are insensitive to traditional EGFR tyrosine kinase inhibitors (TKIs). Mobocertinib is the only approved TKI specifically designed to target EGFR Ex20. We performed an international, real-world safety and efficacy analysis on patients with EGFR Ex20-positive NSCLC enrolled in a mobocertinib early access program. We explored the mechanisms of resistance by analyzing postprogression biopsies, as well as cross-resistance to amivantamab. Data from 86 patients with a median age of 67 years and a median of two prior lines of treatment were analyzed. Treatment-related adverse events (TRAEs) occurred in 95% of patients. Grade ≥3 TRAEs were reported in 38% of patients and included diarrhea (22%) and rash (8%). In 17% of patients, therapy was permanently discontinued, and two patients died due to TRAEs. Women were seven times more likely to discontinue treatment than men. In the overall cohort, the objective response rate to mobocertinib was 34% (95% CI, 24-45). The response rate in treatment-naïve patients was 27% (95% CI, 8-58). The median progression-free and overall survival was 5 months (95% CI, 3.5-6.5) and 12 months (95% CI, 6.8-17.2), respectively. The intracranial response rate was limited (13%), and one-third of disease progression cases involved the brain. Mobocertinib also showed antitumor activity following EGFR Ex20-specific therapy and vice versa. Potential mechanisms of resistance to mobocertinib included amplifications in MET, PIK3CA, and NRAS. Mobocertinib demonstrated meaningful efficacy in a real-world setting but was associated with considerable gastrointestinal and cutaneous toxicity.


Assuntos
Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Masculino , Humanos , Feminino , Idoso , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Éxons
7.
BMC Cancer ; 24(1): 454, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605303

RESUMO

OBJECTIVE: To explore the value of six machine learning models based on PET/CT radiomics combined with EGFR in predicting brain metastases of lung adenocarcinoma. METHODS: Retrospectively collected 204 patients with lung adenocarcinoma who underwent PET/CT examination and EGFR gene detection before treatment from Cancer Hospital Affiliated to Shandong First Medical University in 2020. Using univariate analysis and multivariate logistic regression analysis to find the independent risk factors for brain metastasis. Based on PET/CT imaging combined with EGFR and PET metabolic indexes, established six machine learning models to predict brain metastases of lung adenocarcinoma. Finally, using ten-fold cross-validation to evaluate the predictive effectiveness. RESULTS: In univariate analysis, patients with N2-3, EGFR mutation-positive, LYM%≤20, and elevated tumor markers(P<0.05) were more likely to develop brain metastases. In multivariate Logistic regression analysis, PET metabolic indices revealed that SUVmax, SUVpeak, Volume, and TLG were risk factors for lung adenocarcinoma brain metastasis(P<0.05). The SVM model was the most efficient predictor of brain metastasis with an AUC of 0.82 (PET/CT group),0.70 (CT group),0.76 (PET group). CONCLUSIONS: Radiomics combined with EGFR machine learning model as a new method have higher accuracy than EGFR mutation alone. SVM model is the most effective method for predicting brain metastases of lung adenocarcinoma, and the prediction efficiency of PET/CT group is better than PET group and CT group.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Pulmonares/genética , Estudos Retrospectivos , Adenocarcinoma/genética , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/patologia , Pulmão/patologia , Receptores ErbB/genética , Aprendizado de Máquina , Neoplasias Encefálicas/diagnóstico por imagem
8.
Pathol Oncol Res ; 30: 1611715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605928

RESUMO

The complex therapeutic strategy of non-small cell lung cancer (NSCLC) has changed significantly in recent years. Disease-free survival increased significantly with immunotherapy and chemotherapy registered in perioperative treatments, as well as adjuvant registered immunotherapy and targeted therapy (osimertinib) in case of EGFR mutation. In oncogenic-addictive metastatic NSCLC, primarily in adenocarcinoma, the range of targeted therapies is expanding, with which the expected overall survival increases significantly, measured in years. By 2021, the FDA and EMA have approved targeted agents to inhibit EGFR activating mutations, T790 M resistance mutation, BRAF V600E mutation, ALK, ROS1, NTRK and RET fusion. In 2022, the range of authorized target therapies was expanded. With therapies that inhibit KRASG12C, EGFR exon 20, HER2 and MET. Until now, there was no registered targeted therapy for the KRAS mutations, which affect 30% of adenocarcinomas. Thus, the greatest expectation surrounded the inhibition of the KRAS G12C mutation, which occurs in ∼15% of NSCLC, mainly in smokers and is characterized by a poor prognosis. Sotorasib and adagrasib are approved as second-line agents after at least one prior course of chemotherapy and/or immunotherapy. Adagrasib in first-line combination with pembrolizumab immunotherapy proved more beneficial, especially in patients with high expression of PD-L1. In EGFR exon 20 insertion mutation of lung adenocarcinoma, amivantanab was registered for progression after platinum-based chemotherapy. Lung adenocarcinoma carries an EGFR exon 20, HER2 insertion mutation in 2%, for which the first targeted therapy is trastuzumab deruxtecan, in patients already treated with platinum-based chemotherapy. Two orally administered selective c-MET inhibitors, capmatinib and tepotinib, were also approved after chemotherapy in adenocarcinoma carrying MET exon 14 skipping mutations of about 3%. Incorporating reflex testing with next-generation sequencing (NGS) expands personalized therapies by identifying guideline-recommended molecular alterations.


Assuntos
Acetonitrilas , Adenocarcinoma de Pulmão , Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Piperazinas , Pirimidinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas/genética , Mutação , Adenocarcinoma/genética , Receptores ErbB/genética
9.
Chem Biol Drug Des ; 103(4): e14517, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38610074

RESUMO

The epidermal growth factor receptor (EGFR) has been well validated as a therapeutic target for anticancer drug discovery. Osimertinib has become the first globally accessible third-generation EGFR inhibitor, representing one of the most advanced developments in non-small-cell lung cancer (NSCLC) therapy. However, a tertiary Cys797 to Ser797 (C797S) point mutation has hampered osimertinib treatment in patients with advanced EGFR-mutated NSCLC. Several classes of fourth-generation EGFR inhibitors were consequently discovered with the aim of overcoming the EGFRC797S mutation-mediated resistance. However, no clinical efficacy data of the fourth-generation EGFR inhibitors were reported to date, and EGFRC797S mutation-mediated resistance remains an "unmet clinical need." Proteolysis-targeting chimeric molecules (PROTACs) obtained from EGFR-TKIs have been developed to target drug resistance EGFR in NSCLC. Some PROTACs are from nature products. These degraders compared with EGFR inhibitors showed better efficiency in their cellular potency, inhibition, and toxicity profiles. In this review, we first introduce the structural properties of EGFR, the resistance, and mutations of EGFR, and then mainly focus on the recent advances of EGFR-targeting degraders along with its advantages and outstanding challenges.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Receptores ErbB/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
10.
Am Soc Clin Oncol Educ Book ; 44(3): e432516, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560815

RESUMO

Druggable oncogene-driven non-small cell lung cancer has led to innovative systemic treatment options, improving patients' outcome. This benefit is not only achieved in the metastatic setting but also in the postsurgical setting, such as in lung cancers harboring a common sensitizing EGFR mutation or ALK-rearrangement. To enhance the outcome of these patients, we need to understand the mechanisms of acquired resistance and evaluate the role of new drugs with novel mechanisms of action in the treatment landscape. In this chapter, we review treatment strategies of EGFR-mutant tumors in all stages, the mechanisms of acquired strategies, and novel therapies in this subset.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Quinase do Linfoma Anaplásico/genética , Receptores ErbB/genética , Mutação , Oncogenes , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia
11.
Clin Respir J ; 18(4): e13748, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584122

RESUMO

BACKGROUND: Previous studies have suggested that loss of the EGFR T790M gene mutation may contribute to the development of resistance to Osimertinib in non-small cell lung cancer (NSCLC). AIMS: This study aims to assess the relationship between the clinical effectiveness of Osimertinib in NSCLC patients and the T790M mutation status following resistance to Osimertinib and examine differences between plasma and tissue tests and between Asian and non-Asian groups. METHODS: The PubMed, Web of Science, Cochrane, and EMBASE databases were comprehensively searched for studies on the association between T790M mutation status and the efficacy of Osimertinib between January 2014 and November 2023. Meta-analysis was carried out using Review Manager 5.4 software. RESULTS: After evaluating 2727 articles, a total of 14 studies were included in the final analysis. Positive correlations between EGFR T790M mutation status after Osimertinib resistance and longer PFS (HR: 0.44, 95% CI: 0.30-0.66), longer OS (HR: 0.3, 95% CI: 0.10-0.86), longer TTD (HR: 0.69, 95% CI: 0.45-1.07), and improved clinical outcomes including PFS and TTD subgroups (HR: 0.58, 95% CI: 0.47-0.73) were observed. Subgroup analysis revealed that, compared with the blood tests, the results of the T790M mutation tests by the tissue are more significant (HR: 0.24, 95% CI: 0.11-0.52 for tissue tests; HR: 0.47, 95% CI: 0.22-1.00 for plasma tests), and the PFS of Osimertinib were similar for Asian and non-Asian patients (HR: 0.46, 95% CI: 0.31-0.68 for Asians; HR: 0.12, 95% CI: 0.01-1.27 for non-Asians). CONCLUSIONS: Persistence of the T790M gene mutation after the development of Osimertinib resistance is associated with higher therapeutic benefits of Osimertinib in NSCLC patients. The results of tissue detection are more significant than those of plasma detection.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
12.
J Nanobiotechnology ; 22(1): 159, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589859

RESUMO

Brain metastasis (BM) is one of the leading causes of cancer-related deaths in patients with advanced non-small cell lung cancer (NSCLC). However, limited treatments are available due to the presence of the blood-brain barrier (BBB). Upregulation of lysophosphatidylcholine acyltransferase 1 (LPCAT1) in NSCLC has been found to promote BM. Conversely, downregulating LPCAT1 significantly suppresses the proliferation and metastasis of lung cancer cells. In this study, we firstly confirmed significant upregulation of LPCAT1 in BM sites compared to primary lung cancer by analyzing scRNA dataset. We then designed a delivery system based on a single-chain variable fragment (scFv) targeting the epidermal growth factor receptor (EGFR) and exosomes derived from HEK293T cells to enhance cell-targeting capabilities and increase permeability. Next, we loaded LPCAT1 siRNA (siLPCAT1) into these engineered exosomes (exoscFv). This novel scFv-mounted exosome successfully crossed the BBB in an animal model and delivered siLPCAT1 to the BM site. Silencing LPCAT1 efficiently arrested tumor growth and inhibited malignant progression of BM in vivo without detectable toxicity. Overall, we provided a potential platform based on exosomes for RNA interference (RNAi) therapy in lung cancer BM.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , Animais , Humanos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , RNA Interferente Pequeno/farmacologia , Exossomos/metabolismo , Células HEK293 , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo
13.
Zhongguo Fei Ai Za Zhi ; 27(3): 241-244, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38590198

RESUMO

With the continuous innovation of genomics, proteomics and molecular biological detection technology, the treatment of non-small cell lung cancer (NSCLC) has changed from traditional chemotherapy to immunotherapy and targeted therapy. Among them, molecular tumor markers targeting tyrosine kinase pathways play more important roles in clinical practice. For advanced NSCLC patients with positive epidermal growth factor receptor (EGFR) mutations, there are many first-line drugs on the market and they could bring significant efficacy, thus completely subverting the treatment pattern of advanced NSCLC. Common mutations of EGFR in Chinese patients are located on exons 19, 20 and 21, of which exons 19 and 21 mutations are the more common types. Besides, there is also a subtype of EGFR mutations, known as EGFR 20 exon insertion (EGFR 20ins) mutation. The authors summarized the treatment of a lung adenocarcinoma patient with EGFR 20ins mutation accepting Furmonertinib mesylate, in order to provide effective references for clinical diagnosis and treatment.
.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Piridinas , Pirimidinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Receptores ErbB/genética , Mutação , Éxons
14.
JCO Precis Oncol ; 8: e2300454, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591867

RESUMO

PURPOSE: The National Cancer Institute Molecular Analysis for Therapy Choice trial is a signal-finding genomically driven platform trial that assigns patients with any advanced refractory solid tumor, lymphoma, or myeloma to targeted therapies on the basis of next-generation sequencing results. Subprotocol E evaluated osimertinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, in patients with EGFR mutations. METHODS: Eligible patients had EGFR mutations (T790M or rare activating) and received osimertinib 80 mg once daily. Patients with lung cancer with EGFR T790M were excluded. The primary end point was objective response rate (ORR), and the secondary end points were 6-month progression-free survival (PFS), overall survival, and toxicity. RESULTS: A total of 19 patients were enrolled: 17 were evaluable for toxicity and 13 for efficacy. The median age of the 13 included in the efficacy analysis was 63 years, 62% had Eastern Cooperative Oncology Group performance status 1, and 31% received >three previous systemic therapies. The most common tumor type was brain cancers (54%). The ORR was 15.4% (n = 2 of 13; 90% CI, 2.8 to 41.0) and 6-month PFS was 16.7% (90% CI, 0 to 34.4). The two confirmed RECIST responses were observed in a patient with neuroendocrine carcinoma not otherwise specified (EGFR exon 20 S768T and exon 18 G719C mutation) and a patient with low-grade epithelial carcinoma of the paranasal sinus (EGFR D770_N771insSVD). The most common (>20%) treatment-related adverse events were diarrhea, thrombocytopenia, and maculopapular rash. CONCLUSION: In this pretreated cohort, osimertinib did not meet the prespecified end point threshold for efficacy, but responses were seen in a neuroendocrine carcinoma with an EGFR exon 20 S768T and exon 18 G719C mutation and an epithelial carcinoma with an EGFR D770_N771insSVD mutation. Osimertinib was well tolerated and had a safety profile consistent with previous studies.


Assuntos
Acrilamidas , Compostos de Anilina , Antineoplásicos , Carcinoma Neuroendócrino , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Estados Unidos , Humanos , Pessoa de Meia-Idade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , National Cancer Institute (U.S.) , Antineoplásicos/efeitos adversos , Inibidores de Proteínas Quinases/efeitos adversos , Mutação , Carcinoma Neuroendócrino/tratamento farmacológico
15.
J Transl Med ; 22(1): 326, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566102

RESUMO

BACKGROUND: The effects of gut microbiota and metabolites on the responses to immune checkpoint inhibitors (ICIs) in advanced epidermal growth factor receptor (EGFR) wild-type non-small cell lung cancer (NSCLC) have been studied. However, their effects on EGFR-mutated (EGFR +) NSCLC remain unknown. METHODS: We prospectively recorded the clinicopathological characteristics of patients with advanced EGFR + NSCLC and assessed potential associations between the use of antibiotics or probiotics and immunotherapy efficacy. Fecal samples were collected at baseline, early on-treatment, response and progression status and were subjected to metagenomic next-generation sequencing and ultra-high-performance liquid chromatography-mass spectrometry analyses to assess the effects of gut microbiota and metabolites on immunotherapy efficacy. RESULTS: The clinical data of 74 advanced EGFR + NSCLC patients were complete and 18 patients' fecal samples were dynamically collected. Patients that used antibiotics had shorter progression-free survival (PFS) (mPFS, 4.8 vs. 6.7 months; P = 0.037); probiotics had no impact on PFS. Two dynamic types of gut microbiota during immunotherapy were identified: one type showed the lowest relative abundance at the response time point, whereas the other type showed the highest abundance at the response time point. Metabolomics revealed significant differences in metabolites distribution between responders and non-responders. Deoxycholic acid, glycerol, and quinolinic acid were enriched in responders, whereas L-citrulline was enriched in non-responders. There was a significant correlation between gut microbiota and metabolites. CONCLUSIONS: The use of antibiotics weakens immunotherapy efficacy in patients with advanced EGFR + NSCLC. The distribution characteristics and dynamic changes of gut microbiota and metabolites may indicate the efficacy of immunotherapy in advanced EGFR + NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Imunoterapia , Receptores ErbB/genética , Antibacterianos/uso terapêutico
16.
PLoS One ; 19(4): e0299267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38568950

RESUMO

BACKGROUND AND OBJECTIVE: Glioblastoma (GBM) is one of the most aggressive and lethal human cancers. Intra-tumoral genetic heterogeneity poses a significant challenge for treatment. Biopsy is invasive, which motivates the development of non-invasive, MRI-based machine learning (ML) models to quantify intra-tumoral genetic heterogeneity for each patient. This capability holds great promise for enabling better therapeutic selection to improve patient outcome. METHODS: We proposed a novel Weakly Supervised Ordinal Support Vector Machine (WSO-SVM) to predict regional genetic alteration status within each GBM tumor using MRI. WSO-SVM was applied to a unique dataset of 318 image-localized biopsies with spatially matched multiparametric MRI from 74 GBM patients. The model was trained to predict the regional genetic alteration of three GBM driver genes (EGFR, PDGFRA and PTEN) based on features extracted from the corresponding region of five MRI contrast images. For comparison, a variety of existing ML algorithms were also applied. Classification accuracy of each gene were compared between the different algorithms. The SHapley Additive exPlanations (SHAP) method was further applied to compute contribution scores of different contrast images. Finally, the trained WSO-SVM was used to generate prediction maps within the tumoral area of each patient to help visualize the intra-tumoral genetic heterogeneity. RESULTS: WSO-SVM achieved 0.80 accuracy, 0.79 sensitivity, and 0.81 specificity for classifying EGFR; 0.71 accuracy, 0.70 sensitivity, and 0.72 specificity for classifying PDGFRA; 0.80 accuracy, 0.78 sensitivity, and 0.83 specificity for classifying PTEN; these results significantly outperformed the existing ML algorithms. Using SHAP, we found that the relative contributions of the five contrast images differ between genes, which are consistent with findings in the literature. The prediction maps revealed extensive intra-tumoral region-to-region heterogeneity within each individual tumor in terms of the alteration status of the three genes. CONCLUSIONS: This study demonstrated the feasibility of using MRI and WSO-SVM to enable non-invasive prediction of intra-tumoral regional genetic alteration for each GBM patient, which can inform future adaptive therapies for individualized oncology.


Assuntos
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Medicina de Precisão , Heterogeneidade Genética , Imageamento por Ressonância Magnética/métodos , Algoritmos , Aprendizado de Máquina , Máquina de Vetores de Suporte , Receptores ErbB/genética
17.
PLoS One ; 19(4): e0295987, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593164

RESUMO

Survival rates in non-small cell lung cancer (NSCLC) are low. Detection of circulating tumor DNA in liquid biopsy (plasma) is increasingly used to identify targeted therapies for clinically actionable mutations, including EGFR mutations in NSCLC. The cobas® EGFR Mutation Test v2 (cobas EGFR test) is FDA-approved for EGFR mutation detection in tissue or liquid biopsy from NSCLC. Standard K2EDTA tubes require plasma separation from blood within 4 to 8 hours; however, Roche Cell-Free DNA (cfDNA) Collection Tubes (Roche cfDNA tube) enable whole blood stability for up to 7 days prior to plasma separation. This analysis assessed performance of Roche cfDNA tubes with the cobas EGFR test for the detection of EGFR mutations in plasma from healthy donors or patients with NSCLC. Overall, test performance was equally robust with either blood collection tube, eg, regarding limit of detection, linearity, and reproducibility, making Roche cfDNA tubes suitable for routine clinical laboratory use in this setting. Importantly, the Roche cfDNA tubes provided more flexibility for specimen handling versus K2EDTA tubes, eg, in terms of tube mixing, plasma separation, and sample stability, and do not require processing of blood within 8 hours thereby increasing the reach of plasma biopsies in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Ácidos Nucleicos Livres/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Reprodutibilidade dos Testes , Mutação , Reação em Cadeia da Polimerase , Receptores ErbB/genética
18.
J Neuropathol Exp Neurol ; 83(5): 338-344, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38605523

RESUMO

EGFR amplification in gliomas is commonly defined by an EGFR/CEP7 ratio of ≥2. In testing performed at a major reference laboratory, a small subset of patients had ≥5 copies of both EGFR and CEP7 yet were not amplified by the EGFR/CEP7 ratio and were designated high polysomy cases. To determine whether these tumors are more closely related to traditionally defined EGFR-amplified or nonamplified gliomas, a retrospective search identified 22 out of 1143 (1.9%) gliomas with an average of ≥5 copies/cell of EGFR and CEP7 with an EGFR/CEP7 ratio of <2 displaying high polysomy. Of these cases, 4 had insufficient clinicopathologic data to include in additional analysis, 15 were glioblastomas, 2 were IDH-mutant astrocytomas, and 1 was a high-grade glial neoplasm, NOS. Next-generation sequencing available on 3 cases demonstrated one with a TERT promoter mutation, TP53 mutations in all cases, and no EGFR mutations or amplifications, which most closely matched the nonamplified cases. The median overall survival times were 42.86, 66.07, and 41.14 weeks for amplified, highly polysomic, and nonamplified, respectively, and were not significantly different (p = 0.3410). High chromosome 7 polysomic gliomas are rare but our data suggest that they may be biologically similar to nonamplified gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Estudos Retrospectivos , Neoplasias Encefálicas/patologia , Hibridização in Situ Fluorescente , Receptores ErbB/genética , Glioma/genética , Mutação/genética , Aberrações Cromossômicas , Isocitrato Desidrogenase/genética
19.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38557672

RESUMO

Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer. Early-stage patients have a 30-50% probability of metastatic recurrence after surgical treatment. Here, we propose a new computational framework, Interpretable Biological Pathway Graph Neural Networks (IBPGNET), based on pathway hierarchy relationships to predict LUAD recurrence and explore the internal regulatory mechanisms of LUAD. IBPGNET can integrate different omics data efficiently and provide global interpretability. In addition, our experimental results show that IBPGNET outperforms other classification methods in 5-fold cross-validation. IBPGNET identified PSMC1 and PSMD11 as genes associated with LUAD recurrence, and their expression levels were significantly higher in LUAD cells than in normal cells. The knockdown of PSMC1 and PSMD11 in LUAD cells increased their sensitivity to afatinib and decreased cell migration, invasion and proliferation. In addition, the cells showed significantly lower EGFR expression, indicating that PSMC1 and PSMD11 may mediate therapeutic sensitivity through EGFR expression.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores ErbB/genética , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...